Development of pyrethroid-like fluorescent substrates for glutathione S-transferase.

نویسندگان

  • Huazhang Huang
  • Hongwei Yao
  • Jun-Yan Liu
  • Aman I Samra
  • Shizuo G Kamita
  • Anthony J Cornel
  • Bruce D Hammock
چکیده

The availability of highly sensitive substrates is critical for the development of precise and rapid assays for detecting changes in glutathione S-transferase (GST) activity that are associated with GST-mediated metabolism of insecticides. In this study, six pyrethroid-like compounds were synthesized and characterized as substrates for insect and mammalian GSTs. All of the substrates were esters composed of the same alcohol moiety, 7-hydroxy-4-methylcoumarin, and acid moieties that structurally mimic some commonly used pyrethroid insecticides, including cypermethrin and cyhalothrin. CpGSTD1, a recombinant Delta class GST from the mosquito Culex pipiens pipiens, metabolized our pyrethroid-like substrates with both chemical and geometric preference (i.e., the cis-isomers were metabolized at 2- to 5-fold higher rates than the corresponding trans-isomers). A GST preparation from mouse liver also metabolized most of our pyrethroid-like substrates with both chemical and geometric preference but at 10- to 170-fold lower rates. CpGSTD1 and mouse GSTs metabolized 1-chloro-2,4-dinitrobenezene (CDNB), a general GST substrate, at more than 200-fold higher rates than our novel pyrethroid-like substrates. There was a 10-fold difference in the specificity constant (k(cat)/K(M) ratio) of CpGSTD1 for CDNB and those of CpGSTD1 for cis-DCVC and cis-TFMCVC, suggesting that cis-DCVC and cis-TFMCVC may be useful for the detection of GST-based metabolism of pyrethroids in mosquitoes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of optically pure pyrethroid-like fluorescent substrates for carboxylesterases.

Pyrethroids are now the world's most extensively used insecticides. One of the common metabolic routes of pyrethroid insecticides in living systems is hydrolysis by carboxylesterases, and this hydrolysis may be stereospecific since most pyrethroid insecticides have chiral centers. In previous studies, pyrethroid-like fluorescent substrates have been shown to be hydrolyzed in a fashion similar t...

متن کامل

Cloning and characterization of two glutathione S-transferases from pyrethroid-resistant Culex pipiens.

BACKGROUND The Marin strain of Culex pipiens Say is a pyrethroid-resistant population that was collected in Marin County, California, in 2001 and subsequently maintained in the laboratory under regular permethrin exposure. RESULTS In this study, two cDNAs, CpGSTd1 and CpGSTd2, encoding glutathione S-transferase (GST) were cloned from Cx. pipiens Marin. Phylogenetic analysis of the deduced ami...

متن کامل

Glutathione S- transferases and their function as a protein superfamily in plants

Glutathione s transferase (GST) is one of the largest protein and multigene families present in all plant species and other living organisms. For these proteins, which are highly ‌inducible to stress and internal and external stimuli, several functions in plants have been identified, including implication in secondary metabolism, growth and development, detoxification of herbicides, coping with...

متن کامل

Genetic Polymorphism of the Glutathione S-Transferase M1 and Development of Breast Cancer

Glutathione S-transferases (GSTs) are encoded by a superfamily of genes and play a role in the detoxification of potential carcinogens. The human GSTs are divided into four classes: alpha, mu, pi and theta. Previous studies indicated that the absence of the Glutathione S-Transferase M1 (GSTM1) protein correlated with an increased risk of developing some types of cancers. Association between spe...

متن کامل

Glutathione S-transferases as antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens.

Selection of a laboratory colony of the brown planthopper Nilaparvata lugens with the pyrethroids permethrin and lambda-cyhalothrin increased its resistance to both insecticides. Biochemical analysis and synergistic studies with metabolic inhibitors indicated that elevated glutathione S-transferases (GSTs) with a predominant peroxidase activity conferred resistance to both pyrethroids, whereas ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Analytical biochemistry

دوره 431 2  شماره 

صفحات  -

تاریخ انتشار 2012